Background

What is Deep Neural Decision Forests

Deep Neural Decision Forests(dNDFs)是Neural Networks和Random Forest的结合,但是它更倾向于Neural Networks。它本质上是Nerual Networks incorporate Random Forest来提高NN的效率和准确度,训练方法和NN一致。

dNDFs与NN的不同在output layer层发生变化,不单纯使用FC层输出,而是使用随机森林作为最后一层的分类器,相当于通过前面系统输出的data representation用随机森林作为分类器分类。同时,通过将传统随机森林的local optimize改造成通过back propagation进行global optimize,随机森林的参数训练可以与前端的深度学习网络进行无缝衔接。

Attention

The method is different from random forest in the sense that it uses a principled, joint and global optimization of split and leaf node parameters and from conventional deep networks because a decision forest provides the final predictions

Math in Neural Decision Forests

Decision Tree model要是stochastic的,为了让它differentiable,让后面可以通过back-propagation训练。在传统的decision tree模型中,从node到leaf的路径是由decision function确定的,而在这个模型中,我们将用two sets of probabilities去决定final output。

  1. Probability of an observation reaching to a leaf . These basically are associated with decision node/split node which decides whether an observation goes left or right

  2. Once an observation reaches a leaf node, probability that it takes a specific class

Reference